黑马商城学习笔记(三)

黑马商城学习笔记(三)
Jie商户查询缓存
1. 实现商铺和缓存与数据库双写一致
有关概念在上一节已经介绍,这里直接写代码
需求:根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间,根据id修改店铺时,先修改数据库,再删除缓存
设置redis缓存时添加过期时间
queryById 根据id查询
1 |
|
updateByShop 根据商品更新
通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题
1 |
|
2. 缓存穿透问题的解决思路
缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。
常见的解决方案有两种:
- 缓存空对象
- 优点:实现简单,维护方便
- 缺点:
- 额外的内存消耗
- 可能造成短期的不一致
- 布隆过滤
- 优点:内存占用较少,没有多余key
- 缺点:
- 实现复杂
- 存在误判可能
缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了
指标 | MySQL | Redis |
---|---|---|
典型 QPS | 几千(简单查询) | 5万~20万(单机) |
写入 TPS | 几百(受事务限制) | 几万(无事务场景) |
延迟 | 毫秒~秒级(依赖磁盘 I/O) | 亚毫秒级(内存操作) |
扩展性 | 复杂(需分库分表) | 简单(集群/Proxy) |
适用场景 | 持久化、复杂查询 | 高速缓存、计数器、会话存储等 |
高并发读:用 Redis 缓存热点数据,降低 MySQL 压力。
高并发写:Redis 更适合计数器、队列等场景;MySQL 可通过批量插入、异步写入优化。
混合场景:结合两者,例如用 Redis 抗瞬时流量(如秒杀),MySQL 确保数据一致性。
布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,
假设布隆过滤器判断这个数据不存在,则直接返回
这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突
编码解决商品查询的缓存穿透问题:
在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的
现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。
1 |
|
第一次查询数据库中和缓存中不存在的数据,请求经过了数据库,并缓存了空字符串,设置了短期TTL。
第二次查询(TTL短期内),发起请求相同,查询不存在的数据,未经过数据库,提前判空值返回失败信息。
总结
a. 缓存穿透产生的原因是什么?
- 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力
b. 缓存穿透的解决方案有哪些?
- 缓存null值
- 布隆过滤
- 增强id的复杂度,避免被猜测id规律
- 做好数据的基础格式校验
- 加强用户权限校验
- 做好热点参数的限流
3. 缓存雪崩问题及解决思路
缓存雪崩: 是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决方案:
- 给不同的Key的TTL添加随机值(让失效时间离散分布,确保Key不会在同一时间大量失效)
- 利用Redis集群提高服务的可用性(主从集群、哨兵)
- 给缓存业务添加降级限流策略(比如快速失败机制,让请求尽可能打不到数据库上)
- 给业务添加多级缓存(浏览器缓存 -> Nginx反向代理缓存 -> Redis缓存 -> JVM本地缓存…)
概念补充:
缓存预热:缓存预热是指在系统启动之前或系统达到高峰期之前,将常用数据预先加载到缓存中,以提高缓存命中率和系统性能的过程。缓存预热的目的是模拟爆发式的请求,尽可能地避免缓存击穿和缓存雪崩,还可以减轻后端存储系统的负载,提高系统的响应速度和吞吐量。
哨兵模式:在集群模式下,监控Redis各个节点是否正常,如果主节点故障通过发布订阅模式通知其他节点,并进行故障转移,将其他正常的从节点指定为主节点。
4. 缓存击穿问题及解决思路
缓存击穿: 缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
常见的解决方案有两种:
- 互斥锁
- 逻辑过期
逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大
解决方案一、使用锁来解决:
因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法
+ double check
来解决这样的问题。
假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。
解决方案二、逻辑过期方案
方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。
我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。
这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。
进行对比
**互斥锁方案:**由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响
逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦